RX-MIFARE-WDT

Wiegand Data&Clock proximity reader + keypad

TECHNICAL SPECIFICATIONS

• Power supply : 12-24 v DC

Max. consumption with 12v: 100 mA
Operating temperature: -20°C to +50°C

• Tightness: IP40

• Dimensions (hxlxp) : 158 x 86 x 33 mm

Operating connected to Wiegand terminals
Available in TAG, code or TAG+code

Surface installation

PROGRAMMING OF MASTER CODE

The source code is **000** on leaving the factory.

To program a NEW MASTER CODE, key in **000** and validate

The yellow light comes on.

key in 0 then 000

key in your new master code (1-8 digits).

Validate with key A

Press **P** to exit programming mode.

Example: **5823**

Press 0 then 000 Key in 5823 validate with A and P

EMERGENCY PROCEDURE

IF YOU LOSE OR FORGET YOUR MASTER CODE, THIS OPERATION ALLOWS YOU TO ENTER THE PROGRAM AND ENTER A NEW ONE :

- 1) Disconnect the power supply and wait 5 seconds.
- 2) Short-circuit the programming bridge J1.
- 3) Reconnect the power supply (BIP, BIP). The *yellow light* comes on.
- 4) Press key **0** then **000**
- 5) key in the master code you want (1 to 8 digits).
- 6) Validate the operation with key A
- 7) Press key P to exit programming.

- Types of Identifiers:
 Standard MIFARE and reverse
 MIFARE DESFIRE EV1(only in exclusive reading mode of the l'UID)
- Keypad for intensive use
- Operating only reader, only keypad or reader + keypad
- 1 light indicator available (red)
- 1 light indicator of transmission (green)
- Light and sound indicators

CONNECTION

WARNING! Do not instal 2 proximity readers within 0,5 m of each other

PARAMETERS OF CONFIGURATION

• MIFARE STANDARD MODE / OWNER

Reader may use identifiers MIFARE Standard or MIFARE OWNER. These are not present in other manufacturers, there are a guarantee of quality and consistency of operation tags. WARNING: the two types of identifiers are incompatible. As such, the option must be selected before performing the installation and will not change thereafter.

To set MIFARE STANDARD mode: Press 7 6 1 A
To set MIFARE OWNER mode: Press 7 6 0 A

• TAG+PINcode MODE

In identifying as TAG + PINcode mode, we must introduce the tag and then introduce a key code. So that a user needs this double identification, it is necessary to have to program a PIN code (from 1 to 8 dígits) inside the tag. A tag which does not have a PIN code will function normally, without awaiting the introduction of the code, including if the TAG + PIN code mode were selected on the reader.

<u>To set the PIN code of a TAG</u>: Press 0 802 XXXXXXXX A Yellow led flashing and "tic tic tic" heard Get the tag closer to the reader antenna, beep beep heard

<u>To cancel the PIN code of a TAG</u>: Appuyer sur 9 902 A Yellow led flashing and "tic tic tic" heard Get the tag closer to the reader antenna, beep beep heard

<u>To set TAG+PIN mode:</u> Press 7 7 1 A <u>To cancel TAG+PIN mode:</u> Press 7 7 0 A

• EXLUSIVE READING MODE OF UID

The exclusive reading mode of UID is incompatible with TAG+PINcode mode. This mode guarantees against any use of a sector of the tag, except the UID, which makes it possible to be identified by means of tags belonging to a system already established, without risk to modify its contents or reading of the codes

<u>To set exclusive reading mode of UID</u>: Press 7 8 1 A <u>To cancel exclusive reading mode of UID</u>: Press 7 8 0 A

CODE KEYPAD FORMAT

The code entered on the keypad can be transmitted in two formats:

To indicate numeric format of keypad:

To indicate ELA format keypad:

Press 7 40 A

Press 7 41 A

Examples code keypad format 1 A

Numeric format: 00000001 ELA format: 1FFFFFF

SETTING INSTRUCTIONS

ABBREVIATION	MEANING
TAG	MIFARE ID
xxxxxxx	Code from 1 to 8 digits
PIN	Programmable decimal numeric code on the TAG (1 to 8 digits)
UID	Factory code of the TAG which cannot be erase (8 digits)

Access the programming by the master code	Press keys XXXXXXXX P	Lit yellow indicator (XXXXXXXX = 000 on leaving the factory)			
TO SET	PRESS	COMMENTS			
Master code	0 000 XXXXXXXX A				
PIN code in TAG	0 802 XXXXXXXX A	Present the TAG in front of the antenna of the reader			
Erase PIN code of TAG	9 902 A	Present the TAG in front of the antenna of the reader			
Erase all users	9 999 A				
Total reset	9 943 A	Back to default factory settings			

SELECTED MODES	PRESS
Set MIFARE standard mode	7 61 A
Set MIFARE-owner mode	7 60 A
Set access TAG +PINcode mode	7 71 A
Cancel access TAG +PINcode mode	7 70 A
Set exclusive reading mode of the UID	7 81 A
Cancel exclusive reading mode of the UID	7 80 A
Indicate keypad in numeric format	7 40 A
Indicate keypad in ELA format	7 41 A

SELECTED PROTOCOL	PRESS
WIEGAND-44	7 10 A
REVERSE WIEGAND-44	7 11 A
WIEGAND-26	7 12 A
REVERSE WIEGAND-26	7 13 A
WIEGAND-34	7 14 A
REVERSE WIEGAND-34	7 15 A
CLOCK&DATA 3 bytes	7 16 A
REVERSE CLOCK&DATA 3 bytes	7 17 A
CLOCK&DATA 4 bytes	7 18 A
REVERSE CLOCK&DATA 4 bytes	7 19 A

EXIT PROGRAMMING MODE	PRESS P	YELLOW LED OFF

• DATA/CLOCK FORMAT

 $\label{eq:protocol} PROTOCOL: R11-2B - Transmission \ frecuency: 1000 bits/s \\ FORMAT$

- 1- 16 bits at zero
- 2- Start code SS (B) + odd parity bit.
- 3- 10 reverse BCD nibbles , corresponding to the ID code+ odd parity bit
- 4- Transmission end code ES (F) + odd parity bit.
- 5- Linear redundancy code of previous nibbles, except start zeros + odd parity bit.

 $\begin{array}{l} \mathsf{LCR} = \mathsf{SS} \ \mathsf{N1} \oplus \mathsf{N2} \oplus \mathsf{N3} \oplus \mathsf{N4} \oplus \mathsf{N5} \oplus \mathsf{N6} \oplus \mathsf{N7} \oplus \mathsf{N8} \oplus \mathsf{N9} \oplus \mathsf{N10} \oplus \mathsf{N11} \\ \oplus \ \mathsf{N12} \oplus \mathsf{N13} \oplus \mathsf{ES} \ (\oplus = \mathsf{Function} \ O \ \mathsf{exclusive}) \end{array}$

TIME	DESCRIPTION	MIN.	TYP.	MAX.	UNIT
TSET	Data stup time	5	1/6 TCLOCK		μS
TRM	Data hold time	0	8	2/3 TCLOCK	μS
TWHITE	Clock pulse width	-	1/3 TCLOCK	-	μS
TCLOCK	Clock pulse rate	80	1000	1500	μS
TTOTAL	Time out read operation	-	76	-	Тсьоск

	STARTING	ss	Р	N°1	Р	N°2	Р	 Р	ES	Р	LRC	Р	FINAL
ſ	00000000	1101	0	0000	1	1000	0	 0	1111	1	XXXX	Υ	00000000
	0	В		0		1			F				0

• FORMAT WIEGAND 26 BITS

 $\begin{array}{l} \textbf{PROTOCOL: 3B - Transmission frecuency: 1000bits/s} \\ \hline \textbf{FORMAT} \end{array}$

- 1- Bit $N^{\circ}1$ even parity in bits 2 to 13
- 2- Bit N°2 to N°25 corresponding to the ID code in 6 hexadecimal (3 bytes)
- 3- Bit N°26 odd parity in bits 14 to 26

• FORMAT WIEGAND 34 BITS

FORMAT

- 1- Bit N°1 even parity in bits 2 to 17
- 2- Bit N°2 to N°33 corresponding to the ID code in 8 hexadecimal (4 bytes)
- 3- Bit n°34 odd parity in bits 18 to 33

Examples for a MIFARE card with code FC9EF779

Format WIEGAND 26: 9EF779 Format WIEGAND 34: FC9EF779 Format WIEGAND 44: 00FC9EF779

• FORMAT WIEGAND 44 BITS

 $\begin{array}{c} \textbf{PROTOCOL}: \textbf{3C - Standard} \\ \underline{\textbf{FORMAT}} \end{array}$

 $\overline{\mbox{1-Bit N}^{\circ}\mbox{1 to n}^{\circ}\mbox{40 corresponding to the ID code in 10 hexadecimal}}$ (5 bytes)

2- Bit N°41 to N°44 XOR function of previous numbers

EXAMPLE PROTOCOL : 3C - Standard

FORMAT

The string composed of 44 bits or 40 depending on the tag.

Data: 10 hexadecimal numbers, MSByte in first position. Each hexadecimal

number at 4 bits, MSBIT in first position. LRC: 4 bits = XOR between each number.

bit 1bit 40	bit 41bit 44
Data MSBit in first position	LRC

0000	0000	0000	0000	0000	0000	0000	1001	1101	0010	0110
0	0	0	0	0	0	0	9	D	2	6

Hereby, ACIE AUTOMATISMES SARL, declares that RX-MIFARE-WDT reader is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.